
Non è possibile visualizzare l'immagine.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4: Intermediate SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan4.2Database System Concepts - 6th Edition

Chapter 4: Intermediate SQL

■ Join Expressions
■ Views
■ Transactions
■ Integrity Constraints
■ SQL Data Types and Schemas
■ Authorization

©Silberschatz, Korth and Sudarshan4.3Database System Concepts - 6th Edition

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

■ The join operations are typically used as subquery
expressions in the from clause

©Silberschatz, Korth and Sudarshan4.4Database System Concepts - 6th Edition

Join operations – Example

■ Relation course

■ Relation prereq

■ Observe that
prereq information is missing for CS-315 and
course information is missing for CS-437

©Silberschatz, Korth and Sudarshan4.5Database System Concepts - 6th Edition

Outer Join

■ An extension of the join operation that avoids loss of
information.

■ Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

■ Uses null values.

©Silberschatz, Korth and Sudarshan4.6Database System Concepts - 6th Edition

Left Outer Join

■ course natural left outer join prereq

©Silberschatz, Korth and Sudarshan4.7Database System Concepts - 6th Edition

Right Outer Join

■ course natural right outer join prereq

©Silberschatz, Korth and Sudarshan4.8Database System Concepts - 6th Edition

Joined Relations

■ Join operations take two relations and return as a result
another relation.

■ These additional operations are typically used as subquery
expressions in the from clause

■ Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of the join.

■ Join type – defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 6th Edition

Full Outer Join

■ course natural full outer join prereq

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 6th Edition

Joined Relations – Examples

■ course inner join prereq on
course.course_id = prereq.course_id

■ What is the difference between the above, and a natural join?
■ course left outer join prereq on

course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan4.11Database System Concepts - 6th Edition

Joined Relations – Examples

■ course natural right outer join prereq

■ course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 6th Edition

Views

■ In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

■ Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name
from instructor

■ A view provides a mechanism to hide certain data from the
view of certain users.

■ Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 6th Edition

View Definition

■ A view is defined using the create view statement which has
the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The
view name is represented by v.

■ Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

■ View definition is not the same as creating a new relation by
evaluating the query expression
● Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 6th Edition

Example Views

■ A view of instructors without their salary
create view faculty as

select ID, name, dept_name
from instructor

■ Find all instructors in the Biology department
select name
from faculty
where dept_name = ‘Biology’

■ Create a view of department salary totals
create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 6th Edition

Views Defined Using Other Views

■ create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id

and course.dept_name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

■ create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall_2009
where building= ’Watson’;

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 6th Edition

View Expansion

■ Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number

from course, section
where course.course_id = section.course_id

and course.dept_name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’)

where building= ’Watson’;

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 6th Edition

Views Defined Using Other Views

■ One view may be used in the expression defining another view
■ A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1

■ A view relation v1 is said to depend on view relation v2 if either
v1 depends directly to v2 or there is a path of dependencies
from v1 to v2

■ A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 6th Edition

View Expansion

■ A way to define the meaning of views defined in terms of other
views.

■ Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

■ View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1
Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

■ As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 6th Edition

Update of a View

■ Add a new tuple to faculty view which we defined earlier
insert into faculty values (’30765’, ’Green’, ’Music’);

This insertion must be represented by the insertion of the tuple
(’30765’, ’Green’, ’Music’, null)

into the instructor relation

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 6th Edition

Some Updates cannot be Translated Uniquely

■ create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

■ insert into instructor_info values (’69987’, ’White’, ’Taylor’);
4which department, if multiple departments in Taylor?
4what if no department is in Taylor?

■ Most SQL implementations allow updates only on simple views
● The from clause has only one database relation.
● The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or
distinct specification.

● Any attribute not listed in the select clause can be set to null
● The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 6th Edition

And Some Not at All

■ create view history_instructors as
select *
from instructor
where dept_name= ’History’;

■ What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000)
into history_instructors?

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 6th Edition

Materialized Views

■ Materializing a view: create a physical table containing all the tuples
in the result of the query defining the view

■ If relations used in the query are updated, the materialized view result
becomes out of date
● Need to maintain the view, by updating the view whenever the

underlying relations are updated.

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 6th Edition

Transactions

■ Unit of work
■ Atomic transaction

● either fully executed or rolled back as if it never occurred
■ Isolation from concurrent transactions
■ Transactions begin implicitly

● Ended by commit work or rollback work
■ But default on most databases: each SQL statement commits

automatically
● Can turn off auto commit for a session (e.g. using API)
● In SQL:1999, can use: begin atomic …. end

4 Not supported on most databases

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 6th Edition

Integrity Constraints

■ Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.
● A checking account must have a balance greater than

$10,000.00
● A salary of a bank employee must be at least $4.00 an

hour
● A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 6th Edition

Integrity Constraints on a Single Relation

■ not null
■ primary key
■ unique
■ check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 6th Edition

Not Null and Unique Constraints

■ not null
● Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

■ unique (A1, A2, …, Am)
● The unique specification states that the attributes A1, A2, …

Am
form a candidate key.

● Candidate keys are permitted to be null (in contrast to primary
keys).

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 6th Edition

The check clause

■ check (P)
where P is a predicate

Example: ensure that semester is one of fall, winter, spring
or summer:

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))

);

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 6th Edition

Referential Integrity

■ Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.
● Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

■ Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appear in S.

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 6th Edition

Cascading Actions in Referential Integrity

■ create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)
■ create table course (

…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade
on update cascade,

. . .
)

■ alternative actions to cascade: set null, set default

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 6th Edition

Integrity Constraint Violation During
Transactions

■ E.g.
create table person (

ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

■ How to insert a tuple without causing constraint violation ?
● insert father and mother of a person before inserting person
● OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother
attributes declared to be not null)

● OR defer constraint checking (next slide)

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 6th Edition

Complex Check Clauses

■ check (time_slot_id in (select time_slot_id from time_slot))
● why not use a foreign key here?

■ Every section has at least one instructor teaching the section.
● how to write this?

■ Unfortunately: subquery in check clause not supported by
pretty much any database
● Alternative: triggers (later)

■ create assertion <assertion-name> check <predicate>;
● Also not supported by anyone

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 6th Edition

Built-in Data Types in SQL
■ date: Dates, containing a (4 digit) year, month and date

● Example: date ‘2005-7-27’
■ time: Time of day, in hours, minutes and seconds.

● Example: time ‘09:00:30’ time ‘09:00:30.75’
■ timestamp: date plus time of day

● Example: timestamp ‘2005-7-27 09:00:30.75’
■ interval: period of time

● Example: interval ‘1’ day
● Subtracting a date/time/timestamp value from another gives

an interval value
● Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 6th Edition

Index Creation

■ create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

■ create index studentID_index on student(ID)
■ Indices are data structures used to speed up access to records

with specified values for index attributes
● e.g. select *

from student
where ID = ‘12345’

can be executed by using the index to find the required
record, without looking at all records of student

More on indices in Chapter 11

©Silberschatz, Korth and Sudarshan4.34Database System Concepts - 6th Edition

User-Defined Types

■ create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

● create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

©Silberschatz, Korth and Sudarshan4.35Database System Concepts - 6th Edition

Domains

■ create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

■ Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

■ create domain degree_level varchar(10)
constraint degree_level_test
check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

©Silberschatz, Korth and Sudarshan4.36Database System Concepts - 6th Edition

Large-Object Types

■ Large objects (photos, videos, CAD files, etc.) are stored as a
large object:
● blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

● clob: character large object -- object is a large collection of
character data

● When a query returns a large object, a pointer is returned
rather than the large object itself.

©Silberschatz, Korth and Sudarshan4.37Database System Concepts - 6th Edition

Authorization

Forms of authorization on parts of the database:

■ Read - allows reading, but not modification of data.

■ Insert - allows insertion of new data, but not modification of existing
data.

■ Update - allows modification, but not deletion of data.
■ Delete - allows deletion of data.

Forms of authorization to modify the database schema
■ Index - allows creation and deletion of indices.
■ Resources - allows creation of new relations.
■ Alteration - allows addition or deletion of attributes in a relation.
■ Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 6th Edition

Authorization Specification in SQL

■ The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

■ <user list> is:
● a user-id
● public, which allows all valid users the privilege granted
● A role (more on this later)

■ Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

■ The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 6th Edition

Privileges in SQL

■ select: allows read access to relation,or the ability to query
using the view
● Example: grant users U1, U2, and U3 select

authorization on the instructor relation:
grant select on instructor to U1, U2, U3

■ insert: the ability to insert tuples
■ update: the ability to update using the SQL update

statement
■ delete: the ability to delete tuples.
■ all privileges: used as a short form for all the allowable

privileges

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 6th Edition

Revoking Authorization in SQL

■ The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

■ Example:
revoke select on branch from U1, U2, U3

■ <privilege-list> may be all to revoke all privileges the revokee
may hold.

■ If <revokee-list> includes public, all users lose the privilege
except those granted it explicitly.

■ If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

■ All privileges that depend on the privilege being revoked are
also revoked.

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 6th Edition

Roles

■ create role instructor;
■ grant instructor to Amit;
■ Privileges can be granted to roles:

● grant select on takes to instructor;
■ Roles can be granted to users, as well as to other roles

● create role teaching_assistant
● grant teaching_assistant to instructor;

4 Instructor inherits all privileges of teaching_assistant
■ Chain of roles

● create role dean;
● grant instructor to dean;
● grant dean to Satoshi;

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 6th Edition

Authorization on Views

■ create view geo_instructor as
(select *
from instructor
where dept_name = ’Geology’);

■ grant select on geo_instructor to geo_staff
■ Suppose that a geo_staff member issues

● select *
from geo_instructor;

■ What if
● geo_staff does not have permissions on instructor?
● creator of view did not have some permissions on

instructor?

©Silberschatz, Korth and Sudarshan4.43Database System Concepts - 6th Edition

Other Authorization Features

■ references privilege to create foreign key
● grant reference (dept_name) on department to Mariano;
● why is this required?

■ transfer of privileges
● grant select on department to Amit with grant option;
● revoke select on department from Amit, Satoshi cascade;
● revoke select on department from Amit, Satoshi restrict;

■ Etc. read Section 4.6 for more details we have omitted here.

Non è possibile visualizzare l'immagine.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 4

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan4.45Database System Concepts - 6th Edition

Figure 4.01

©Silberschatz, Korth and Sudarshan4.46Database System Concepts - 6th Edition

Figure 4.02

©Silberschatz, Korth and Sudarshan4.47Database System Concepts - 6th Edition

Figure 4.03

©Silberschatz, Korth and Sudarshan4.48Database System Concepts - 6th Edition

Figure 4.04

©Silberschatz, Korth and Sudarshan4.49Database System Concepts - 6th Edition

Figure 4.05

©Silberschatz, Korth and Sudarshan4.50Database System Concepts - 6th Edition

Figure 4.07

Taylor

©Silberschatz, Korth and Sudarshan4.51Database System Concepts - 6th Edition

Figure 4.06

©Silberschatz, Korth and Sudarshan4.52Database System Concepts - 6th Edition

Figure 4.03

